Chez les hippocampes, spéciation deux en un

Peu de choses étaient connues sur la génétique de l’hippocampe moucheté, Hippocampus guttulatus, l’une des deux espèces d’hippocampes qui peuple les côtes européennes.

Une étude de génétique des populations de ce poisson iconoclaste menée par une équipe de l’Institut de Sciences de l’Evolution de Montpellier (ISEM – CNRS/Université de Montpellier/IRD/EPHE), aidée de ses collaborateurs européens et associations pour l’environnement, dévoile une subdivision de cette espèce en quatre lignées génétiques partiellement isolées, bien que morphologiquement indissociables.

Côté Océan Atlantique, on trouve une lignée au nord et une autre au sud du Pays basque où elles coexistent en s'hybridant occasionnellement. Côté Mer Méditerranée, les deux lignées sont associées à des habitats contrastés, l’un marin et l’autre lagunaire.

 » en savoir plus avec le CNRS

La pêche industrielle affame les oiseaux marins

L’intensification de la pêche industrielle contribue à diminuer la quantité de nourriture disponible pour les oiseaux marins, menaçant de nombreuses espèces dans le monde. Des chercheurs du Centre d’écologie fonctionnelle et évolutive du CNRS à Montpellier, de l’Université de Colombie Britannique (Canada) et de l’Université d’Aberdeen (Ecosse) ont cartographié pour la première fois, la compétition entre la pêche industrielle et les oiseaux marins à travers le monde entre 1970 et 2010. Selon leur étude, la consommation moyenne annuelle de nourriture des oiseaux a diminué de 70 à 57 millions de tonnes entre les périodes 1970-1989 et 1990-2010, tandis que la capture annuelle moyenne des proies des oiseaux par les pêcheries a augmenté de 59 à 65 millions de tonnes au cours des mêmes périodes.


Fous de Bassan (crédit photo : Jacques Carles)

Malgré le net déclin de la communauté mondiale des oiseaux marins pendant la période 1970-2010, la pression de compétition exercée par les pêcheries demeure soutenue. Cette compétition a même augmenté dans près de la moitié des océans du monde. L’étude est publiée le 6 décembre 2018 dans la revue Current Biology.

Graphique représentant le déclin de la communauté d’oiseaux marins et l’intensification de la pêche industrielle, 
dans le monde au cours de la période 1970-2010. (source : Current Biology)

________________________________

(1) Grémillet et al., Persisting Worldwide Seabird-Fishery Competition Despite Seabird Community Decline, Current Biology (2018),https://doi.org/10.1016/j.cub.2018.10.051

Le besoin d’explorer l’inconnu

Depuis la nuit des temps les hommes ont été attirés par l’inconnu. Sur Terre ils n’ont eu de cesse d’aller au delà de l’horizon, de découvrir de nouveaux continents et d’autres formes de civilisations. Leur curiosité les a amené à explorer le moindre recoin de la planète. Ce désir de connaître et de repousser les limites du monde connu a modifié le cours de l’histoire de l’humanité. Il a été la source de drames mais aussi de bénéfices et de progrès pour nos sociétés. La conquête spatiale répond à ce même besoin d’explorer l’inconnu. Pour les hommes, fasciné depuis toujours par le ciel, l’exploration spatiale n’est pas qu’un exploit technique ou la recherche de nouvelles ressources minérales, elle contient une part de rêve. L’infiniment lointain s’adresse à notre imaginaire, il nous amène à réfléchir sur l’avenir de notre espèce et sur sa place dans l’univers. Qui ne s’est interrogé en levant les yeux vers le firmament étoilé ?

Nous savons aujourd’hui que la terre n’est plus au centre de l’Univers, que l’homme n’est qu’une espèce parmi d’autres et qu’il n’est pas la finalité de la création. Nous comprenons que les atomes qui composent notre corps proviennent de la matière fabriquée par les étoiles comme toutes les autres formes de vie. Treize milliards d’années après le big bang nous commençons à percevoir l’unité et la cohérence derrière l’extraordinaire diversité des éléments qui constitue le monde visible. Nous sommes partie d’un tout. A un degré ou à un autre nous sommes issus de poussières d’étoiles, parent des galaxies et des nébuleuses, des pulsars et des comètes.

Si la science progresse et nous éclaire sur l’univers qui nous entoure, elle reste néanmoins incapable de répondre à la question de savoir si cet univers est le fruit du pur hasard ou s’il est la matérialisation d’un dessein qui nous échappe. Notre monde a-t-il un sens ? Existe-t-il un au-delà ? Face à l’immensité du cosmos, science et spiritualité se côtoient pour tenter d’apporter des réponses aux questions métaphysiques que l’humanité se pose depuis toujours. Ce désir universel de comprendre l’univers et de l’explorer peut-il aujourd’hui faire de l’espace un lieu de fraternité pour l’espèce humaine?

» lire aussi l'espace rapproche les peuples sur futuroscopie.org , un magazine numérique du réseau OC-INFOS

Aveugles sourds et muets…

Ne cherchez pas ! Ce sont les vers de terre…Très précieux alliés des jardiniers ou des agriculteurs. Ils digèrent les débris végétaux et enrichissent le sol en humus, et grâce à leurs galeries, aèrent la terre et limitent le ruissellement de l'eau. Et ils méritent vraiment qu’on s’intéresse à eux…

 


Lombricus Terrestris Montpellieris

 

Les 3 catégories de vers de terre

En fonction de leur mode de vie, de leur taille, de leur habitat, de leur comportement et de leurs ressources alimentaires les vers de terre se répartissent en trois grandes catégories :

LES ÉPIGES

Ce sont des vers de surface et les plus petites espèces, ce sont eux principalement que l’on utilise pour le compostage particulièrement Eisenia Fétida et Eisenia Andrei.


Eisenia Fétida
tigre rouge ou ver rouge de Californie


Eisenia Andrei
ver de fumier, ou ver tigré

Ils vivent, surtout dans les prairies et les forêts, longueur 2 à 8 cm, durée de vie 1 à 2 ans. Ils n’ont que très peu de galeries, ils se nourrissent directement de matières organiques et de végétaux en décomposition ; ce sont entre autres des vers de compost Ils sont petits et fins, vivent à la surface du sol, au niveau de la litière rarement en dessous de 5 cm. Ce sont des décomposeurs.

On les trouvera également dans les excréments des grands herbivores ou dans le bois humide en cours de décomposition, Ils sont parfois utilisés de façon industrielle (épuration des eaux) et pour produire du « lombricompost » ou pour traiter les déchets ménagers (lombricompostage) ou vermicompostage, terme utilisé en Belgique et au Canada. Certaines espèces sont élevées pour servir d’appâts pour la pêche, entre-autre le Dendrobaena Veneta qui est un peu plus long, mais difficile à identifier.

Peu protégés, les épigés subissent une forte prédation qu’ils compensent par une fertilité élevée (42 à 106 cocons par adulte et par an). Quand la nourriture est abondante et les conditions climatiques favorables, ils peuvent se multiplier très rapidement. (Ils deviennent adultes en l’espace de 2 mois) Leurs cocons, qui résistent à la sécheresse, assurent la survie de l’espèce.

LES ENDOGES

Ils vivent dans leurs galeries horizontales entre 15 et 30 cm de profondeur dans la terre arable et ne viennent jamais à la surface. Ces vers mesurent de 4 à 18 cm et ont une durée de vie de 3 à 8 ans. Ils se nourrissent de terre mélangée à la matière organique et vivent en permanence dans le sol généralement assez haut dans la zone racinaire des plantes. Ils représentent 20 à 50 % de la biomasse des terres fertiles .Ils ne sont pas pigmentés. Ils ont une fécondité moyenne de 8 à 27 cocons par adulte et par an.

En période de sécheresse ils tombent en léthargie (diapause) et on les trouve enroulés sur eux-mêmes. Les vers endogés présentent des modes de vie assez différenciés. Certains sont filiformes et s’installent le long des racines, d’autres forment des pelotes dans les couches profondes du sol, à proximité des drains, et filtrent l’eau dont ils séparent les particules organiques.

On en connaît aussi qui sont prédateurs d’autres vers de terre. Le corps du ver peut comporter jusqu’à 200 segments dont chacun est muni de poils courts (soies). Les muscles circulaires et longitudinaux se trouvent sous la peau. S’il contracte les muscles circulaires, les muscles longitudinaux se relâchent et l’endroit concerné se rétrécit et s’allonge. C’est en alternant l’allongement et le raccourcissement des parties de son corps que le ver de terre rampe vers l’avant.

Pour s’enfoncer dans le sol, il enfile sa «tête» fine dans une étroite fissure, puis il contracte ses muscles longitudinaux, l’avant de son corps s’épaissit et écarte la terre. Les vers de terre peuvent déplacer de cette manière jusqu’à 60 fois le poids de leur corps, ce qui les propulse par rapport à leur poids parmi les animaux les plus puissants du monde.

LES ANECIQUES

(Dont le lombric commun fait partie) sont les plus grosses espèces.ils sont capables d’ingérer en moyenne 270 tonnes de terre à l’hectare et par an

D’une longueur de 15 à 45 cm Ils creusent des galeries verticales jusqu’à 6 m de profondeur Ils cherchent leur nourriture à la surface du sol puis la distribuent en profondeur grâce aux galeries verticales qu’ils creusent.Ce sont eux que l’on trouve lorsqu’on retourne la terre du jardin.

S’il n’y a pas de vers de terre dans votre jardin ce n’est pas bon signe…Les feuilles et les débris organiques qu’ils peuvent entraîner dans leurs galeries sont ingurgités avec de la terre. Les excréments sont déposés à la surface du sol sous forme de tortillons appelés aussi turricules. Des trois groupes ce sont eux qui ont la fécondité la plus réduite, soit de 3 à 13 cocons par adulte et par an.

En Europe tempérée les vers anéciques représentent 80 % de la masse totale des lombrics. Le plus grand vers anécique de la faune française est le Lombricus Terrestris. Ce ver de terre est rouge-brun à l’avant et plutôt pâle à l’arrière. On le trouve partout sur la planète: dans les prairies, les champs, les jardins et les forêts, où il perce dans le sous-sol des galeries presque verticales jusqu’à près de 2 mètres de profondeur.

Le verre de terre Lumbricus terrestris s’accouple quant à lui une fois par année en formant 5 à 10 cocons contenant chacun 1 œuf. Sa durée de vie va de 4 à 8 ans

Dans un prochain reportage nous aborderons
le compostage et le lombricompostage.

   

Les vers de terre se rencontrent dans tous les milieux excepté les déserts trop secs et les glaciers trop froids. Les vers de terre mesurent de 2 cm (pour l'espèce Nord-américaine Bimastos parvus) à près de 3 m (pour l'espèce australienne Megascolides Australis). Ils mesurent plus généralement de 5 à 30 cm.

Dans une prairie en système tempéré la biomasse lombricienne peut atteindre 22 % de la biomasse totale de l'édaphon (ensemble des organismes vivants dans le sol.)

Au 19ème et début du 20ème siècle, le ver de terre est plutôt considéré comme malfaisant. Dans les cours d’agriculture de l’abbé François ROZIER (botaniste et agronome français 1737–1793), un chapitre traite des aspects « nuisibles » de l’animal. Mais c’est Charles Robert DARWIN, naturaliste anglais (1809-1882) qui redonnera au ver ses « lettres de noblesse »

 

Les vers de terre n'aiment pas :

  • Les sols trop travaillés : le travail du sol, et en particulier le retournement de la terre, peut détruire les œufs (déposés généralement en surface) et les galeries ; les outils blessent les vers
  • Les sols nus (peu de débris végétaux donc peu de nourriture)
  • Les sols compactés (par le piétinement ou le passage de véhicules par exemple)
  • Les sols sableux, et/ou demeurant longtemps secs en été
  • Les sols très acides.

Les vers de terre n’aiment pas non plus les pesticides… (On trouve rarement des vers de terre dans les vignobles)

 

Des études ont montré que les déjections des vers de terre sont, par rapport au sol environnant :

  • 5 fois plus riches en azote
  • 2 fois plus riches en calcium
  • 2,5 fois plus riches en magnésium
  • 7 fois plus riches en phosphore
  • 11 fois plus riches en potassium

LES INTESTINS DE LA TERRE

Apparus il y a 635 millions d’années les vers de terre actuels remontent au mésozoïque soit environ 200 millions d’années. Leurs ancêtres étaient des vers de vase et vivaient en eau douce. Et ils ont fait leur évolution principale au même moment que les plantes à fleurs, il y a environ 100 millions d’années. Il n’existe pas à ce jour de fossile de vers, seulement quelques empreintes laissées dans l’argile.

Entre - 384 et - 322 le philosophe Aristote déclarait que les vers de terre étaient « les intestins de la Terre". Animaux sacrés en Grèce et en Egypte ! Cléopâtre (-69-30 av. J.C.) avait même édicté une loi interdisant d’exporter les vers de terre. Accusés à tort au 18ème siècle de manger les racines des plantes ! C’était une erreur, car ils n’ont pas de dents !

L’ensemble des vers de terre représentent treize familles et près de 7000 espèces documentées, 400 en Europe et 150 en France. De très nombreuses variétés de lombrics sont d'ailleurs encore peu connues, surtout dans les régions tropicales. Certains vers de terre d’Amérique centrale et du Sud peuvent atteindre 3 mètres. Et les plus grandes espèces de vers se trouvent en Australie (Vers du Gippsland) qui atteint plus de 3 mètres, avec 3 cm de diamètre pour un poids de 500 gr.
Le Lumbricus terrestris mesure couramment de 9 cm à 30 cm de long et de 6 mm à 10 mm de large En France le plus grand ver de terre se trouve dans la région de Montpellier le Lombricus Terrestris Montpellieris, il peut atteindre 1.10m de long et peut creuser des galeries jusqu’à 5/6 mètres de profondeur Hélas il est en voie de disparition.
On dénombre de1 à 4 millions de vers par hectare (dans une prairie Normande), eton estime à 1,2 tonne la moyenne par hectare en France pour cette biomasse lombricienne vive, constituée à 80% d’anéciques, 20 % d’endogés, et seulement 1% d’épigés. En Guadeloupe Marcel Bouché* estime à 7 tonnes par hectare la biomasse lombricienne.

Dans 1 m² de terre les lombriciens, représentent en moyenne 500 mètres de galeries creusées (5000 km pour un hectare) Ces nombreuses galeries permettent en cas d’inondation d’absorber jusqu’à 16 cm d’épaisseur d’eau par heure (sauf si le sol est bitumé ou bétonné !)Il suffit d’imaginer que pour un mètre cube de terre colonisée normalement par les vers de terre, c’est 900 mètres de galeries présentes ! Un kilo de vers remue environ 240 kg de terre par an. On estime la production de déjections annuelles (fèces) à 300 tonnes à l’hectare (30 kg au m²)

Si on pesait tous les vers de terre de la planète, ils seraient plus lourds que tous les autres animaux et humains de la planète réunis. En effet, on estime qu'ils représentent à eux seuls près de 80 % de la biomasse animale de la planète. Ce sont des animaux consommateurs dominant, et la biomasse animale la plus importante des terres émergées (environ 20 fois celle de l’homme)

Ils sont devenus habitants de la terre à partir de la formation du sol, par l’interaction de la végétation, du climat et des roches primitives. L’évolution des vers a continué avec l’apparition des plantes. Les vers de terre appartiennent à de nombreuses espèces et, dans un milieu donné, on trouve facilement une dizaine d’espèces différentes, toutes hermaphrodites.

LA VIE AMOUREUSE DES HERMAPHRODITES

Les vers de terre s’accouplent surtout au printemps et en automne. Ils sont hermaphrodites, c’est-à-dire qu’ils possèdent aussi bien des testicules que des ovaires. Les vers qui ont atteint leur maturité sexuelle se reconnaissent à un épaississement situé au tiers antérieur du corps, le clitellum.

Pour se reproduire, deux vers de terre se collent tête-bêche étroitement l’un à l’autre et échangent leur sperme. Ils forment ensuite autour du clitellum un anneau de mucus dont ils se dépêtrent ensuite lentement en y excrétant leurs œufs et leur sperme.

Une fois détachée, cette manchette de mucus forme un cocon gros comme une tête d’allumette. Après une période de quelques semaines à plusieurs mois, selon l’espèce, les jeunes vers de terre éclosent de cet «œuf».


Oeufs d'Eisenia avant et lors de l'éclosion

ALERTE AU PLATHELMINTHES TERRESTRES INVASIFS

Chercheur au muséum national d’histoire naturelle, le professeur Jean-Lou Justine a lancé un vaste appel à témoin via la presse et les réseaux sociaux pour tenter de mesurer l’ampleur de l’invasion en France des plathelminthes terrestres invasifs depuis 2013. Ces vers plats venus de l’hémisphère sud représentent une menace écologique majeur puisqu’ils se nourrissent de lombrics. Les témoignages recueillis par le professeur Justine lui ont permis de découvrir qu’en fait sept espèces différentes sont désormais présentes en France dont certaines ont colonisé des départements entiers.

Et parmi toutes ces espèces il en est une encore plus redoutable que les autres, le Platydemus manokwari. Celui-ci dévore les escargots puis il s’attaque à d’autres animaux « mous » : limaces, vers de terre… C’est un monstre qui n’a jamais été détecté en Europe jusqu’à présent. Or, il vient d’être découvert au jardin des plantes de Caen (Calvados). L’affaire est suffisamment grave pour que le professeur Justine publie un article dans une revue scientifique américaine et lance un appel à la mise en place de mesures pour éradiquer ce nouvel intrus (cliquez ici pour le consulter)

Georges Cantin

pour en savoir plus : vous pouvez vous procurer l’excellent livre de Marcel B. Bouché "Des vers de terre et des hommes " publié chez Acte Sud.

D'abord jardinier, puis chercheur et directeur de recherche, Marcel B Bouché, mondialement reconnu, s'est consacré aux études écologiques concrètes des vers de terre et à l'élaboration de techniques d'observation et de gestion-interprétation des connaissances rendant effectivement possibles les évaluations et valorisations environnementales de nos activités.

Jean-Luc Khalfaoui nouveau président d'Agropolis international

Succédant à Bernard Hubert au terme de son second mandat, Jean-Luc Khalfaoui prend ses fonctions en qualité de président de l'association Agropolis international.

Le  pôle régional Agropolis  basé à Montpelier est aujourd’hui l’un des acteurs majeurs de la recherche et de l'enseignement au niveau international sur la base de ses institutions membres de hautes compétences dans les domaines : Agriculture, Alimentation, Environnement et Biodiversité. Il regroupe 2700 chercheurs et enseignants.

Cette prise de fonction fait suite à une élection à l’unanimité, le jeudi 7 décembre 2017. Le nouveau président souhaite, avec l’appui et au nom de tous ses membres, accompagner l’association dans ses grandes orientations et notamment :

  • L’élargissement territorial de l’organisation à l’ensemble de la région Occitanie à travers l'implication et le développement des institutions toulousaines de la recherche, de l'enseignement supérieur et de la formation dans les domaines Agriculture, Alimentation, Environnement et Biodiversité,

  • Le soutien du développement de l’I-Site MUSE (Montpellier Université d’Excellence) notamment dans ses actions à l’international.

Jean-Luc KhalfaouiJean-Luc Khalfaoui est docteur de l’Université d’Orsay – Paris XI en amélioration génétique des plantes et spécialiste du management par un MBA à San Francisco.

Sur la base de cette double formation science et management, le nouveau président a consacré, avec succès, plus de 30 années professionnelles dédiées à la recherche agricole sur des domaines clefs : production de connaissances scientifiques innovantes, élaboration et mise en oeuvre de stratégies de recherche ; management d'institutions de recherche ; développement de partenariats scientifiques et politiques au niveau national, européen et international en particulier avec les pays du Sud et méditerranéens ; développement d’interfaces entre recherche et entreprises.

Sa carrière scientifique commence à l’international, en 1983 au Sénégal, pays dans lequel il reste de nombreuses années et où il initie la création du Centre d'étude régional pour l'amélioration de l'adaptation à la sécheresse – CERAAS, à présent un des centres majeurs de la recherche agricole en Afrique de l'Ouest qui vient de célébrer ses 20 ans.

Il revient en France en 1992 où il occupe alors différentes responsabilités au sein du Cirad : chargé de valorisation, directeur adjoint des affaires scientifiques puis directeur du département des cultures annuelles.  

En 2005, il rejoint à Bruxelles, la Direction générale de la recherche de la Commission européenne -DG RTD- où il assume jusqu’en 2009,la fonction de secrétaire exécutif de l’Initiative européenne pour la recherche agronomique pour le développement (EIARD). Il dirige ensuite les relations européennes et internationales du Cirad.

En 2010, il est nommé chef de programme des sciences de la vie appliquées (dont les domaines scientifiques d'Agropolis International) du Conseil européen de la recherche (ERC) à Bruxelles.

De retour à Montpellier, en 2016, il exerce les fonctions de directeur général délégué à la recherche et à la stratégie du Cirad.

Le soleil de minuit

Une solution béton pour stocker l’énergie solaire à faible coût

 

VOSS
(Volant de Stockage Solaire)

Eclaté du Volant Energiestro

Le volant ENERGIESTRO est constitué d’un cylindre (1) capable de résister à une grande vitesse de rotation pour stocker l’énergie sous forme cinétique. Un moteur/alternateur (2) permet de transférer de l’énergie électrique au volant (accélération) puis de la récupérer (freinage). Les paliers inférieur (3) et supérieur (4) sont des roulements à billes. Une butée magnétique passive (5) supporte le poids du volant. Une enceinte étanche (6) maintient le volant dans le vide pour supprimer le frottement de l’air. Un convertisseur électronique (non représenté) transforme la tension continue aux bornes du volant en une tension alternative haute fréquence pour le moteur/alternateur.

André Gennesseaux

Né en 1962, André est ingénieur des Arts et Métiers ainsi que de l’Ecole Polytechnique. En 1988, il commence une carrière de chercheur puis devient responsable de la recherche chez Total (filiales Hutchinson et Paulstra). Il travaille sur des projets concernant la réduction des nuisances des moteurs qui donnent naissance à 20 brevets dont plusieurs sont en exploitation aujourd’hui.
Avec sa femme Anne, il fonde Energiestro en 2001 avec pour objectif de développe la technologie du volant de stockage d’énergie pour réduire le coût du stockage trop élevé des batteries, et ainsi augmenter la pénétration des énergies renouvelables.

Son projet de volant de stockage solaire (VOSS) lui a permis d’être lauréate du Concours Mondial d’Innovation 2030.

 

   

Le prix des panneaux photovoltaïques a tellement baissé que l’énergie solaire est devenue moins chère que le nucléaire et les autres ressources fossiles. En plus, c’est une énergie non polluante et renouvelable. 

L’énergie solaire est aussi extrêmement abondante : une surface carrée de panneaux photovoltaïques de 500 km de coté dans le Sahara permettrait d’alimenter la planète entière en électricité.
Alors, pourquoi n’est-elle pas notre ressource principale pour produire de l’électricité, pour nous chauffer, pour nous éclairer ?  André Gennesseaux, le fondateur de la start-up « Energiestro » nous en  donne la raison :  l’intermittence du flux solaire. L’énergie solaire arrive de façon concentrée au milieu de la journée, quand l’intensité du soleil est la plus forte. En revanche, notre consommation d’énergie est régulière. La nuit, on a besoin de lumière et de chaleur.  Pour utiliser de grande quantité d’énergie solaire, le stockage est indispensable. Les batteries ne peuvent répondre au problème comte tenu de leur coût élevée et de leur faible durée de vie : elles ne dépassent pas quelques milliers de cycles et n’aiment pas les températures extrêmes.
La solution est celle des volants d’inertie, ces cylindres qui tournent à grand vitesse pour stocker l’énergie sous forme cinétique. Leur énorme avantage sur les batteries est qu’ils ont une durée de vie illimitée  mais leur matériau habituel (acier spécial ou carbone) est très cher.
André Gennesseaux, avec sa société Energiestro, a réussi ,pour la première fois, à utiliser le béton, matériau très économique pour réaliser le VOSS : VOlant de Stockage Solaire.La fabrication d’un VOSS ne nécessite aucun matériau toxique ou stratégique comme le plomb, le cadmium le  lithium qu’on trouve dans les batteries.

source :www.energiestro.fr

L’association de panneaux photovoltaïque et de VOSS produit une énergie renouvelable, disponible nuit et jour, à un prix inférieur à celle issue du nucléaire et des autres ressources fossiles.

Applications potentielles.

  • Le stockage et le lissage des énergie renouvelable intermittentes
  • l’alimentation, en électricité des sites isolés : relais de télécommunication GSM, habitation…
  • l’électrification rurale des pays en développement
  • dessalement solaire : le volant ENERGIESTRO permet d’alimenter une usine de dessalement par osmose inverse nécessitant une puissance constante à partir de panneaux photovoltaïques produisant une puissance intermittente
  • etc.

source : TedxParis/YouTube

 » pour en savoir plus :  www.energiestro.fr

L’audition des premières baleines

L’organe auditif des premières baleines, les protocètes, vient d’être reconstitué virtuellement par des paléontologues de l’Institut des sciences de l'évolution de Montpellier (CNRS/Université de Montpellier/IRD/EPHE). Ces cétacés aujourd’hui éteints, étaient, malgré des moeurs essentiellement aquatiques, pourvus de membres postérieurs leur permettant de se mouvoir sur la terre ferme. La reconstitution virtuelle de leur cochlée, l’organe siège de l’audition, suggère que leurs capacités auditives étaient très différentes de celles de leurs cousins actuels.

Les protocètes, « baleines à pattes » disparues il y a 38 millions d’années, ont aujourd’hui laissé place à deux grands groupes de cétacés qui diffèrent considérablement par leur mode de communication et leurs capacités auditives. Les mysticètes, baleines à fanons, sont sensibles aux basses fréquences et émettent des infrasons pour communiquer sur de très grandes distances. Au contraire, les odontocètes, baleines à dents, produisent des ultrasons utilisés pour l’écholocalisation.

Jusqu’ici, deux hypothèses s’opposaient concernant la mise en place de ces capacités auditives remarquables : l’une proposait que l’ancêtre commun des cétacés soit sensible aux infrasons, l’autre qu’il le soit aux ultrasons. Dans une étude publiée le 8 juin 2017 dans Current Biology, Mickaël Mourlam et Maeva Orliac, paléontologues à l’Institut des sciences de l'évolution de Montpellier (CNRS/Université de Montpellier/IRD/EPHE), proposent un nouveau scénario évolutif de la mise en place des capacités auditives des cétacés.

En utilisant la micro-tomographie à rayons X, les chercheurs ont extrait virtuellement le moulage 3D de la cochlée, l’organe siège de l’audition, à partir de restes crâniens fossilisés de protocètes. Ces derniers, vieux d’environ 45 millions d’années, provenaient d’une mine de phosphate du Togo et étaient conservés dans les collections de l’Université de Montpellier. Cette étude montre que la forme et les caractéristiques de la cochlée des cétacés protocètes différent nettement de celles des deux grands groupes actuels de cétacés. Cela implique que la spécialisation vers les infrasons et les ultrasons est intervenue au sein des cétacés modernes après la séparation historique entre les mysticètes et les odontocètes.

Les capacités auditives des protocètes étaient finalement proches de celles de leurs cousins ongulés pleinement terrestres : ils n’étaient vraisemblablement sensibles ni aux ultrasons, ni aux infrasons. Cette absence de spécialisation suggère que les protocètes n’utilisaient pas l’écholocalisation et, contrairement aux baleines actuelles, ne communiquaient pas sur de longues distances grâce à des basses fréquences, ce qui est en accord avec leur habitat préférentiel supposé, proche des côtes. Selon le nouveau scénario évolutif proposé, l’ancêtre commun des cétacés ne présentait pas non plus de spécialisation auditive : ses capacités couvraient une gamme de fréquence optimale à la fois sur terre et dans l’eau correspondant à son mode de vie amphibie.

Ces découvertes soulignent l’importance de l’étude des premiers cétacés pour comprendre l’adaptation à la vie aquatique chez ce groupe de mammifères hors-normes. En effet, les protocètes nous permettent d’obtenir une image plus précise de l’histoire évolutive des cétacés, qui s’avère plus complexe que celle proposée jusqu’alors. Jusqu’à présent les chercheurs ont pu documenter l’oreille de deux des trois espèces retrouvées au Togo. Ils espèrent, lors de leur prochaine mission en décembre, mettre la main sur un fossile qui leur permettra d’explorer l’oreille de la troisième.


Figure 1
: illustration du modèle 3D de la cochlée de Carolinacetus sp. (UM-KPG-M164, vue ventrale), une des espèces de protocète du Togo. © M. J. Orliac
Figure 2 : os pétreux isolé de Carolinacetus sp. (UM-KPG-M164), une des espèces de protocète du Togo et reconstruction in situ du moule de la cochlée (en rouge vif) visible au travers d'un rendu transparent de l'os pétreux (vue ventrale). © M. J. Orliac
Figure 3 : portrait d'un protocète du Togo © illustration M. J. Orliac d'après une reconstruction du crâne réalisée par Róisín Mourlam.

Bibliographie
Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales, Mickaël J. Mourlam et Maeva J. Orliac, Current Biology, 08 juin 2017. DOI: 10.1016/j.cub.2017.04.061

La Maison Tarbouriech explore les propriétés du byssus de moules

Des produits innovants et écologiques

Et si la barbe des moules était un matériau du futur ?


L’entreprise : La Maison Tarbouriech (société Medithau) située à Marseillan au bord de l’étang de Thau, conchyliculteur et leader de la production de moules et d’huîtres haut de gamme en France, se distingue par une politique de qualité à travers des démarches d’amélioration continue au service de ses produits et des consommateurs mais aussi par des efforts constants en matière d’innovation, de développement durable et d’économie circulaire.

Le byssus :
Appelé « soie marine » ou « soie des rois », ou plus trivial « barbe de moules », le byssus est une fibre naturelle fabriquée par la moule pour s’accrocher aux rochers. Il est reconnu depuis l’Antiquité pour sa souplesse, sa brillance et sa résistance. Il se compose de protéines dont le collagène, ses fibres très robustes permettent à la moule de résister aux vagues.

Le projet :
Comment valoriser les déchets conchylicoles ? Telle est la question que se pose Florent Tarbouriech au quotidien dans sa quête de développement durable depuis le début de son aventure. C’est pourquoi il s’intéresse au byssus de moules comme une matière renouvelable pouvant s’intégrer dans la conception de nouveaux produits.

La recherche :
Des réflexions et des expérimentations, sur le byssus en tant que matière première, ont été menées depuis 2011 en collaboration avec l’Ecole Supérieure d’Art et de design de Saint-Etienne et se poursuivent depuis au sein du laboratoire Prod’IA.

Ambitions :
Fortement engagée dans une démarche d’éco-conception, la Maison Tarbouriech a la volonté de valoriser les nombreuses propriétés du byssus dans la création de produits innovants et respectueux de l’environnement.
Grâce à la valorisation des biomatériaux tels que le byssus, des papiers de création destinés aux artistes ont été mis au point.
Mais les ambitions de l’entreprise ne s’arrêtent pas là : Des résultats prometteurs sont enregistrés dans l’élaboration de tissus techniques, de matériaux propres à l’ameublement et à la décoration, ou encore dans les cosmétiques.

lire aussi les moules utiles à la science

Succès pour le projet Montpellier Université d’Excellence !

Succès pour le projet Montpellier Université d’Excellence ! C’est un succès majeur pour toute la communauté scientifique montpelliéraine et une belle reconnaissance de son potentiel et de ses projets.  Après son audition par un jury internatioanal ce 21 février, le projet Montpellier Université d’ Excellence ( MUSE ) a décroché la labellisation  Initiative - Sciences- Innovation - Territoires - Economie (I-Site) . MUSE  sera un formidable accélérateur pour l’avenir de l’ensemble du site et pour sa visibilité sur la scène nationale et internationale de l’enseignement supérieur et de la recherhche.

Résultat de recherche d'images pour "universite montpellier"

 

Carole Delga se félicite de l'obtention du Label I-Site pour le projet MUSE de Montpellier
 
« Je suis fière que le projet MUSE, « Montpellier University of Excellence », porté par la communauté scientifique de Montpellier et soutenu activement par la Région Occitanie / Pyrénées-Méditerranée, ait obtenu aujourd'hui le label I-SITE, Initiatives - Science - Innovation - Territoires - Economie.
 
Ce label d'excellence reconnaît et salue aux yeux du monde un projet ambitieux, collectif et exemplaire : la création d'une université thématique de recherche en santé, environnement et agriculture à Montpellier. Grâce à cette labellisation, l'avenir de l'enseignement supérieur et de la recherche se pense véritablement à l'échelle internationale. Quel atout pour le développement de notre Région !
 
Grâce à de nouveaux partenariats efficaces, par la recherche, la formation et l'innovation, Muse a pour ambition d'apporter des réponses qui impacteront positivement la société autour de trois problématiques principales : la promotion d'une agriculture innovante, contribuant à la sécurité alimentaire et à la qualité environnementale ; la transition vers une société respectueuse de l'environnement et l'amélioration de la santé humaine.
Je tiens à féliciter Philippe Augé, président de l'Université de Montpellier, François Pierrot, coordonnateur du projet MUSE et l'ensemble des partenaires. Riche de ses 6 000 scientifiques et de ses 50 000 étudiants, le succès du projet MUSE est le fruit d'une collaboration et d'un investissement sans précédent de 10 organismes de recherche (BRGM - CEA - Cirad - CNRS - Ifremer - Inra - Inria - Inserm - IRD - Irstea), 4 écoles (Architecture Montpellier - Chimie Montpellier - Mines d'Alès - SupAgro), 3 établissements de santé (CHU Montpellier - CHU Nîmes - Institut du Cancer de Montpellier) et une organisation internationale (CIHEAM-IAMM). Je veux vivement remercier les hommes et les femmes qui se sont mobilisés au sein de ces structures, ainsi que les 150 partenaires qui ont soutenu MUSE dans la course à la labellisation : PME, grands groupes, pôles de compétitivité et ONG.
L'obtention du label I-SITE va renforcer l'attractivité et la compétitivité internationale de l'Université de Montpellier. C'est une contribution importante pour constituer un véritable projet de territoire avec les autres établissements de la Région, en particulier avec la construction d'un établissement expérimental à l'Université de Toulouse en vue de la reconquête de l'Idex, et qui aura un impact majeur en faveur du développement de notre grande Région ».
La Région soutient ce projet exemplaire dans le cadre du Schéma régional de l'enseignement supérieur, la recherche et l'innovation (SRESRI), voté lors de la session plénière du 2 février dernier. Sa mise en œuvre se traduit par une politique régionale volontariste avec un budget de près de 70 M€ par an, soit 350 M€ sur la période 2017-2021, pour accompagner l'ensemble des sites universitaires de la Région Occitanie / Pyrénées-Méditerranée. L'I-SITE MUSE pourra ainsi compter sur cet accompagnement majeur de la Région, en plus de la contribution régionale de 41 M€ déjà prévus dans le cadre du CPER 2015-2020.
 

   

Une ambition scientifique confortée

Ce résultat conforte l’ambition du projet MUSE, le plus vaste projet scientifique jamais imaginé sur le site montpelliérain, de relever trois défis majeurs pour le XXI e siècle : nourrir, protéger et soigner . « En pariant sur la force de frappe de Montpellier dans le domaine des sciences du vivant, de l’environnement et de l’agriculture et apportant une réponse collective à ces trois défis interdépendants , MUSE a joué la carte gagnante » se félicite le président de l’Université de Montpellier, Philippe Augé . Par la recherche, la formation et l’innovation, MUSE va s’engager dans la conquête d’espaces scientifiques et économiques nouveaux et contribuera à la sécurité alimentaire, à la gestion durable des ressources naturelles et des écosystèmes ainsi qu’ à l’amélioration des traitements des maladies infectieuses émergentes, des maladies chroniques et des cancers . « Muse a vocation à hisser Montpellier au rang de référence internationale en santé, sciences de l’ environnement et agriculture » se réjouit François Pierrot, le coordonnateur du projet qui implique autour de l’Université de Montpellier, 10 organismes de recherche (BRGM - CEA - Cirad - CNRS - Ifremer - Inra - Inria - Inserm - IRD - Irstea ) , 4 écoles (ENSAM - ENSCM - EMA - SuAgro), 3  tablissements de santé (CHU Montpellier - CHU Nîmes - Institut de Cancérologie de Montpellier ) et une organisation internationale (CIHEAM - IAMM).

Une présence exceptionnelle au Sud renforcée

Avec 400 chercheurs actuellement installés de manière permanente dans la zone intertropicale , Muse dispose en effet d’un réseau et d’une expertise sans équivalent au niveau mondial dans les pays du Sud , en particulier grâce au savoir - faire du Cirad, de l’IRD et du CNRS . Premier site national en agro - environnement - biodiversité, Montpellier est aujourd’hui le leader français de la recherche sur les nouveaux modèles agricoles ou la gestion environnementale. De même, le site montpelliérain fait figure de référence sur l’étude des maladies infectieuses émergentes et des vecteurs de transmission. Deux enjeux qui concernent au premier chef les pays du Sud et qui sont au cœur du projet labellisé.

Une dynamique de coopération reconnue qui va s’ accélérer.

Riche de ses 6 000 scientifiques et de ses 50 000 étudiants, le projet MUSE bénéficie du soutien actif de la Région Occitanie / Pyrénées – Méditerranée et de Montpellier Méditerranée Métropole La création d’une université thématique de recherche internationalement reconnue capable d’entraîner dans une dynamique positive toutes les communautés scientifiques (non seulement celles de l’agronomie, de l’écologie et de la biologie, mais aussi de la chimie, des sciences dures, de l’ingénierie et des sciences sociales) est en effet un atout stratégique pour le développement du territoire. Ce sont, en outre, plus de 150 partenaires qui ont soutenu MUSE dans la cours e à la labellisation et se sont engagés à s’investir davantage dans des partenariats université – entreprise : PME, grands groupes (dont cinq partenaires privilégiés : la Banque Populaire du Sud, BRL, Horiba, Invivo et MSD) et pôles de compétitivité (Derbi , Eau, Eurobiomed, Mer, Optitec, Qualiméditerranée et Trimatec) . Objectif  : mettre sur pied de s laboratoires communs de renommée mondiale , envoyer des équipes de recherche sur les campus, co - élaborer des enseignements adaptés aux enjeux de demain, co-construire des projets européens ... « L’obtention de la labellisation I - SITE va permettre d’amplifier à tous les niveaux le partenariat entre les acteurs du monde socio - économique et le pôle d’excellence scientifique de MUSE » conclut Jacques Mercier, vice - président chargé de la recherche de l’UM.

 

 

Lancement du premier dictionnaire scientifique d’agroécologie !

Un dictionnaire scientifique, libre, gratuit, participatif et accessible à tous : telle est la définition de cet outil innovant et original ! Issu d’un dispositif de veille territoriale né à l’Inra de Toulouse, le dictionnaire d’agroécologie définit les contours sémantiques de ce domaine pour permettre au plus grand nombre d’en comprendre les enjeux et les pratiques.

Denmark
nature
Sunflower
 

Sujet d’actualité aux contours flous, parfois sujet à controverse, fortement médiatisé, l’agroécologie revêt plusieurs dimensions. C’est à la fois un mouvement social, un modèle agricole souvent associé à une agriculture écologiquement et socialement plus responsable et un domaine scientifique. Ce dictionnaire répond aux besoins du citoyen, de l’agriculteur, des acteurs du développement des chercheurs pour comprendre le sens de chaque terme aujourd’hui couramment utilisé par les différents acteurs investis dans ce domaine.

Né d’un dispositif de veille territoriale en région Occitanie
Depuis 2013, les informations traquées à partir de sources scientifiques, règlementaires, associatives, administratives, issues de pages Web, de sites internet, de flux RSS, de blogs, de la presse générale et spécialisée, sont collectées, analysées puis validées. Aujourd’hui, ce sont plus de 300 termes qui ont été capitalisés à partir de l’observation et l’analyse des réalités du terrain et de l’expertise de scientifiques de différentes disciplines : agroécologie, agronomie, sciences de gestion, écologie, zootechnie, économie, sciences des organisations, géographie.

Expertise et validation par un comité scientifique
Chaque entrée du dictionnaire  est rédigée par un expert scientifique. Certaines définitions associent des étudiants ingénieurs de l’Ecole de Purpan.
Lors de séminaires mensuels, les définitions sont mises en débat au sein d’un comité d’experts favorisant ainsi les échanges interdisciplinaires sur les termes ou concepts de l’agroécologie. Une fois validée collectivement, la définition est mise en ligne.
Ce projet de dictionnaire est adossé à un projet scientifique, ATA-RI* issu du Programme pour et Sur le Développement Régional.

Un dictionnaire accessible à tous et participatif !
Son édition en ligne permet une consultation libre et gratuite. Sa structuration et son organisation offrent différents niveaux de lecture et en font un outil dynamique grâce aux images, aux vidéos, aux interviews d’auteurs et aux infographies. Il est une ressource pédagogique conçue pour apporter à un large public des définitions claires rédigées et validées par la recherche.

Il s’agit également d’un outil évolutif qui doit permettre à d’autres acteurs et territoires de s’en emparer et de participer à son enrichissement.

» Accéder au dictionnaire

Première observation d’un cycle magnétique de type solaire

61 Cyg A : Une étoile dont le champ magnétique varie comme celui du Soleil

Les astronomes se demandent depuis longtemps si les caractéristiques du Soleil en font un objet particulier, ou bien juste une étoile typique parmi tant d’autres. Après neuf années d’observations intensives, une équipe de scientifiques, dont des chercheurs du Laboratoire Univers et particules de Montpellier (CNRS/Université de Montpellier) et de l’Institut de recherche en astrophysique et planétologie (CNRS/Université Paul Sabatier), vient de découvrir la toute première étoile dont le champ magnétique varie comme celui du Soleil. Ce résultat est publié en ligne le 6 octobre 2016 dans Astronomy & Astrophysics.

Depuis de nombreuses années, nous savons que la grande majorité, voire toutes les étoiles, sont actives – à des degrés divers, et que cette activité (détectable à travers les variations de luminosité des étoiles par exemple) résulte de leur champ magnétique. Le Soleil, l'étoile la plus proche de la Terre, ne fait pas exception : ses variations, tout au long du cycle magnétique de 22 ans, s'accompagnent de l'inversion de la polarité de son champ magnétique chaque onze ans. Les fluctuations solaires sont relativement faibles et plutôt lentes comparées à celles des étoiles magnétiquement actives connues, qui pour la plupart varient considérablement en terme de luminosité, sont le siège d'intenses et violentes éruptions stellaires, et dont la variabilité sur des durées de quelques mois à quelques années est beaucoup plus complexe que le cycle solaire. Pour cette raison, les astronomes se sont longtemps demandés si notre Soleil était particulier, ou si d'autres étoiles arboraient la même variabilité.

L'activité du Soleil est intrinsèquement liée à son champ magnétique, directement responsable de l'apparition de taches en surface ainsi que d'éruptions. Ce même champ alimente en outre le vent solaire, véritable flux de matière diffusé en continu dans l'espace. Sur une période de quelque vingt-deux ans, l'ensemble de ces caractéristiques varie, augmentant et diminuant régulièrement. Deux "périodes actives" sont ainsi entrecoupées de "minima solaires", plus calmes. Durant plus de quarante ans, les astronomes ont observé les étoiles proches, à la recherche d'un astre se comportant similairement à notre Soleil. Ces observations ont révélé l'existence d'étoiles dotées d'une semblable variabilité – décennale. La question de la concordance de cette variabilité et de l'inversion de champ magnétique est toutefois demeurée sans réponse.

L'avènement, voici une dizaine d'années, d'instruments dédiés baptisés "spectropolarimètres stellaires", a permis de cartographier les champs magnétiques d'étoiles proches de type Soleil. Grâce à cette nouvelle technologie, qui équipe le Télescope Bernard Lyot installé au Pic du Midi, les astronomes de l'équipe Bcool ont effectué le suivi observationnel d'un certain nombre d'étoiles proches, parmi lesquelles 61 Cyg A. De dimensions plus petites et de luminosité plus faible que celles du Soleil, cette étoile située dans la constellation septentrionale du Cygne est à peine visible à l'oeil nu.

Ces observations on révélé la grande similitude de 61 Cyg A et du Soleil. A la différence de ce dernier, 61 Cygni constitue un système binaire dont les deux composantes, 61 Cyg A et 61 Cyg B, sont de taille et de luminosité légèrement inférieures à celles du Soleil. En dépit de ces différences, 61 Cyg A arbore des variations d'activité qui coïncident avec les changements de polarité de son champ magnétique – ces changements surviennent tous les 7 ans, et la durée complète du cycle magnétique s'établit à 14 ans. En outre, le champ magnétique de 61 Cyg A se révèle d'autant plus complexe à l'approche de ces "inversions" (illustration 1). Ce comportement est parfaitement analogue à celui du Soleil. C'est la toute première fois qu'une telle similitude est observée.

"Les preuves observationnelles de l'existence d'une activité magnétique semblable à celle du Soleil au sein d'étoiles telle 61 Cyg A nous permettront de simuler, via des modèles informatiques, la création de champs magnétiques stellaires de type solaire, de mieux comprendre les processus dynamos à l’œuvre au sein des étoiles analogues au Soleil, et donc au sein du Soleil lui-même", précise Julien Morin, enseignant-chercheur au LUPM, l'un des co-auteurs. Comprendre la façon dont les étoiles de type solaire génèrent leurs champs magnétiques et les effets de ces champs magnétiques sur l'évolution des planètes et le développement de la vie constitue l'un des thèmes clés de l'astrophysique moderne. L'étude des autres étoiles nous permettra par ailleurs de mieux comprendre les processus générateurs du champ magnétique solaire ainsi que son impact sur la technologie terrestre et embarquée. Le vent solaire et surtout les éjections de matière coronale produites par les éruptions solaires peuvent en effet avoir des répercutions importante sur Terre. Lorsque ces flots de plasma atteignent la Terre, ils produisent non seulement les aurores boréales et australes qui illuminent les nuits hivernales des régions polaires (illustration 2), mais ils peuvent également perturber les communications radio et les réseaux électriques au sol, ainsi qu’endommager les satellites voir menacer la santé des astronautes en orbite terrestre.

en savoir dans Astronomy & Astrophysics (en anglais).

 

Le réseau de lignes magnétiques de l’étoile 61 Cyg A.
A gauche, une observation en juillet 2010 révèle un champ magnétique à la géométrie complexe, alors que l’étoile est proche de son maximum d’activité. A droite, une observation réalisée cinq années plus tard montre l’étoile à son minimum d’actrivité. Cette observation d’août 2015 montre une structure magnétique plus simple, de nature dipolaire, assez semblable dans sa géométrie au champ magnétique d’un simple barreau aimanté, ou à celui d’une planète comme la Terre. Cette évolution montre une similitude frappante avec le cycle solaire.